EVA Systems, Robotic Systems and Simulation

presentation to the
Asteroid Initiative Idea Synthesis Workshop

NASA’s Goddard Space Flight Center
October 1, 2013
ARM Challenges

• This mission is incredibly difficult
 – This is both good and bad

• Some significant challenges are:
 – Small targets are hard to find and characterize
 – Capture technologies difficult to prove on the ground
 – Mass, mass, mass
 – Signal latency due to target location
 – Limited EVA time

• Focus areas of this talk
 – Robotics during capture and EVA
 – Dexterous tools – both EVA and robotic
 – Simulation systems

...and, by the way, make the solution extensible for the future.
Robotic Arm and Tool Drive System

- Facilitates “multiple dissimilar technologies” for capture
- Characterizes asteroid prior to crew launch
 - Allows for proper training/tools to accommodate asteroid composition
- Enables “get-ahead” work prior to crew arrival
 - Asteroid fragmenting, and coring (significant increase in exploration/science return)
- Augments EVA crew member efficiency
 - Installs/acts as crew aids
 - Robotic translation aid

- Present flight arm development effort is ~ one year from receipt of engineering development unit with control electronics
 - Deep-space flight qualification heritage from Mars Exploration Program rovers
 - GEO designed arm developed for DARPA’s FREND program
- Tool drive system allows tool swap and actuation of tools
- Software automatically handles:
 - Control of Cartesian motion of tool position/orientation
 - Avoiding singularities
 - Observing workspace and joint limits
 - Avoiding collision
 - Currently in integration and test on ground robot platforms
Dexterous Tools - Both EVA and Robotic

- Asteroid material handling is an unstructured problem necessitating a wide range of tools and techniques

- The Satellite Servicing Capabilities Office has repeatedly demonstrated its capacity for assessment of a specialized EVA task, and answered the call with the design and build of tools and devices for astronauts to utilize in completing intricate operations
 - Over 300 unique tools flown as part of the Hubble Servicing Missions
 - The Robotic Refueling Mission has continued to further tool development
 - Our partner West Virginia University has produced ‘smart’ gripper tool and now is leveraging mining tool technology

- EVA tasks developed around multifunctional tools will serve to meet conflicting requirements of robust solutions with constrained mass budgets
Simulation Systems (1 of 2)
Satellite Technology Center at NASA GSFC

• Motion platforms with validated real-time, flexible modes simulating relative satellite dynamics

• “One-touch,” software-based reconfigurable simulation of inertias, physical properties, kinematics, and dynamics of various space robots and targets

• Used to support:
 – Sensor performance envelope determination
 – Engineering trade studies and requirement development and verification
 – Teleoperation and autonomous operations
 • Flight tool engineering development and testing
 • Procedure development
 • Operator training

March 2013: NASA performs a first-of-its-kind high-fidelity, near real-time, full 6-degree-of-freedom autonomous capture demonstration.
Freespace is a collection of software tools enabling:

- Multibody Dynamic Simulation validated against industry applications
- High-end graphics visualization (real-time shadowing, reflections, terrain generation)
- Matlab-like console interface for simulation setup and analysis
- Shared library of sensors, actuators, control methods, targeting methods or isolated project specific modules

Geomod modeling tool tied in with Freespace simulations

- Visualize trajectories, import Earth, Sun, satellite CAD models
- Modify material parameters, groupings, locations, etc.

Synthetic

Actual – STS-125
Eager To Continue the Agency’s EVA History