Restore-L

Proving Satellite Servicing

Need extra gas or a tune-up for your satellite? For years, such services were outside the realm of possibility for most spacecraft. But now, one mission will break that paradigm.

In the News

8.07.2017 - NASA Tests Autopilot Sensors During Simulations

6.23.2016 - Restore-L Mission to Refuel Landsat 7, Demonstrate Crosscutting Technologies


Restore-L

Meet Restore-L, a robotic spacecraft equipped with the tools, technologies and techniques needed to extend satellites' lifespans - even if they were not designed to be serviced on orbit.

During its mission, the Restore-L servicer will rendezvous with, grasp, refuel and relocate a government-owned satellite to extend its life. But Restore-L's effect will not end there.

The benefits are many. Restore-L's capabilities can give satellite operators new ways to manage their fleets more efficiently, and derive more value from their initial investment. These capabilities could even help mitigate the looming problem of orbital debris.

Successfully completing this mission will demonstrate that servicing technologies are ready for incorporation into other NASA missions, including exploration and science ventures. NASA is also transferring Restore-L's technologies to commercial entities to help jumpstart a new domestic servicing industry.

Restore-L servicerArtist's concept of Restore-L. Credit: NASA  
Restore-L servicer

Bringing Restore-L to Life

It takes years of testing, countless hours of design, and five new technologies to make robotic satellite servicing a reality. Here's a breakdown of the key elements of Restore-L.


Mission Facts

LAUNCH DATE: Mid 2020

ORBIT: Polar low Earth orbit (LEO)

CLIENT: A satellite in LEO owned by the U.S. government

OPERATIONS: Autonomous rendezvous and grasping with telerobotic refueling and relocation

MANAGEMENT: The Space Technology Mission Directorate at NASA Headquarters and the Satellite Servicing Projects Division at NASA's Goddard Space Flight Center



Servicing Technologies

1. AUTONOMOUS, REAL-TIME RELATIVE NAVIGATION SYSTEM
Sensors, algorithms and a processor join forces, allowing Restore-L to rendezvous safely with its client.

2. SERVICING AVIONICS
In addition to ingesting and crunching sensor data, these elements control Restore-L's rendezvous and robotic tasks.

3. DEXTEROUS ROBOTIC ARMS
Two nimble, maneuverable arms precisely execute servicing assignments. Software comes included.

4. ADVANCED TOOL DRIVE AND TOOLS
Sophisticated, multifunction tools are manufactured to execute each servicing task.

5. PROPELLANT TRANSFER SYSTEM
This system delivers measured amounts of fuel to the client at the right temperature, pressure and rate.



Who Benefits?

NASA, the United States, and commercial industry - and others who also rely on satellites for data services. Already, NASA is incorporating elements of the core Restore-L technologies into the architecture for the Journey to Mars.


What's In A Name?

NASA chose the name Restore to highlight how servicing capabilities can return a satellite to its original capability.

NASA logo
Goddard Space Flight Center
privacy