html5 video converter by v3.9.1

Proving Satellite Servicing

Need extra gas or a tune-up for your satellite? For years, such services were outside the realm of possibility for most spacecraft. But now, one mission will break that paradigm.

About Restore-L

Meet Restore-L, a robotic spacecraft equipped with the tools, technologies and techniques needed to extend satellites' lifespans - even if they were not designed to be serviced on orbit.

During its mission, the Restore-L servicer will rendezvous with, grasp, refuel and relocate a government-owned satellite to extend its life. But Restore-L's effect will not end there.

The benefits are many. Restore-L's capabilities can give satellite operators new ways to manage their fleets more efficiently, and derive more value from their initial investment. These capabilities could even help mitigate the looming problem of orbital debris.

Successfully completing this mission will demonstrate that servicing technologies are ready for incorporation into other NASA missions, including exploration and science ventures. NASA is also transferring Restore-L's technologies to commercial entities to help jumpstart a new domestic servicing industry.

Restore-L servicerArtist's concept of Restore-L. Credit: NASA  
Restore-L servicer

Video Credit: Maxar

Space Infrastructure Dexterous Robot (SPIDER)

The Restore-L spacecraft will include an attached payload called Space Infrastructure Dexterous Robot (SPIDER).

SPIDER includes a lightweight 16-foot (5-meter) robotic arm, bringing the total number of robotic arms flying on Restore-L to three. Previously known as Dragonfly during the ground demonstration phase of the NASA Tipping Point partnership, SPIDER will assemble seven elements to form a functional 9-foot (3-meter) communications antenna. The robotically assembled antenna will demonstrate Ka-band transmission with a ground station.

The payload also will manufacture a 32-foot (10-meter) lightweight composite beam using technology developed by Tethers Unlimited of Bothell, Washington. The assembly and manufacturing element of the demonstration will verify the capability to construct large spacecraft structures in orbit.

SPIDER will help mature space technologies with many potential cross-cutting applications, including:

Who Benefits?

NASA, the United States, and commercial industry - and others who also rely on satellites for data services. Already, NASA is incorporating elements of the core Restore-L technologies into the architecture for the Journey to Mars.

Enabling a New Era diagram

What's In A Name?

NASA chose the name Restore to highlight how servicing capabilities can return a satellite to its original capability.

Bringing Restore-L to Life

It takes years of testing, countless hours of design, and five new technologies to make robotic satellite servicing a reality. Here's a breakdown of the key elements of Restore-L.

Mission Facts


ORBIT: Polar low Earth orbit (LEO)

CLIENT: A satellite in LEO owned by the U.S. government

OPERATIONS: Autonomous rendezvous and grasping with telerobotic refueling and relocation

MANAGEMENT: The Space Technology Mission Directorate at NASA Headquarters and the Satellite Servicing Projects Division at NASA's Goddard Space Flight Center

Servicing Technologies

Sensors, algorithms and a processor join forces, allowing Restore-L to rendezvous safely with its client.

In addition to ingesting and crunching sensor data, these elements control Restore-L's rendezvous and robotic tasks.

Two nimble, maneuverable arms precisely execute servicing assignments. Software comes included.

Sophisticated, multifunction tools are manufactured to execute each servicing task.

This system delivers measured amounts of fuel to the client at the right temperature, pressure and rate.

In the News

NASA logo
Goddard Space Flight Center