

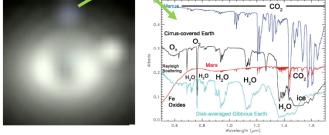
Ball Aerospace & Technologies Corp.

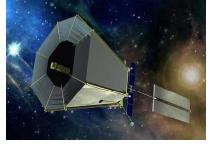
External Occulter Planet Finder Mission at L2

A Potential "Customer" for Robotic Servicing

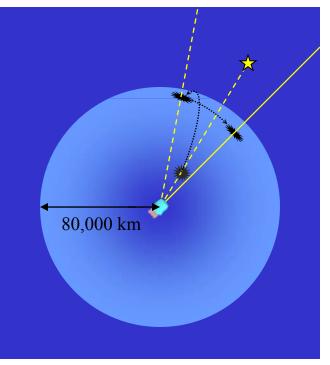
Charley Noecker (BATC) in collaboration with

University of ColoradoGoddard Space Flight CenterNorthrop Grumman Aerospace SystemsPrinceton University


Approved for public release, distribution unlimited


Terrestrial Planet Finder with Occulters

- The search for planets like Earth, hosting biology like our own
- Three families of instrument concepts
 - Mid-infrared nulling interferometer


- Visible light coronagraph

- Visible light external occulter
- Occulter is as ancient as blocking the sun's glare with a hand

- Planet-star angle $< 0.5 \ \mu rad$ and brightness ratio $\sim 10^{-10}$.
 - $-\,$ Requires occulter's angular size also $<0.5~\mu rad$ and shadow depth ${\sim}10^{-10}$
- Optical diffraction requires a very large occulter, very far away
 - Diameter: 30-100m
 - Separation distance: 30,000-100,000 km
- Move occulter from star to star
 - Typical slew angle between stars is 10-20°
 → 9,000-18,000 km travel
- Seek >120 target observations in 5 years
 → dozens of exoplanets and their spectra

"Fuel Is Science"

- Science is limited by number of stellar visits in a mission
 - Initial detection Return for characterization
- Visits limited by fuel
 - Typical 1 star/2 weeks for 5 years requires total $\Delta v \sim 12,000$ m/s
 - High I_{sp} thrusters needed \rightarrow fuel mass ~900-1200 kg Xenon
 - Fuel consumed on <u>each slew</u> is proportional to 1/(slew time T): $\Delta m_{\text{fuel}} = 8 \frac{D}{T} \frac{M_{\text{wet}}}{g \cdot I_{\text{sp}}}$
- Number of stars observed in entire mission depends directly on fuel mass

$$N \cong \underbrace{\begin{array}{c} g \cdot I_{sp} \cdot T_{M} \\ 8 \cdot D \\ 8 \cdot D \\ Typical slew distance between stars \end{array}}^{Mission duration, or time between refuelings}$$

24 March 2010

Robotic servicing can extend mission Scenarios with 10 year lifetime

- Option 1: Servicing after 5 years (10 yr total), rendezvous at L2 or at earth-moon L1
 - Doubles number of star observations
- Option 2: Higher fuel rate, servicing every 2 years, rendezvous at L2
 - 60% more stars
- Option 3: Occulter 44% farther from telescope, servicing every 2 years, rendezvous at L2
 - Better science: see planets 20% closer to star
 - More thorough search of each star, and/or
 - Choose candidate stars from 73% larger list

Refueling (recharge Xe tanks)	1200 kg
Replacing thrusters, PPUs	269 kg
Total service, payload to occulter	1469 kg
Number of star observations	250
Number of servicing missions	1

Each service, payload to occulter	1469 kg
Number of star observations	395
Number of servicing visits	4
Total payload to occulter	5876 kg

Each service, payload to occulter	1469 kg
Number of star observations	329
Number of servicing visits	4
Total payload to occulter	5876 kg

Robotic servicing can extend mission Scenarios with 10 year lifetime

- Option 1: Servicing after 5 years (10 yr total), rendezvous at L2 or at earth-moon L1
 - Doubles number of star observations
- Option 2: Higher fuel rate, servicing every 2 years, rendezvous at L2
 - 60% more stars
- Option 3: Occulter 44% farther from telescope, servicing every 2 years, rendezvous at L2
 - Better science: see planets 20% closer to star
 - More thorough search of each star, and/or
 - Choose candidate stars from 73% larger list

	Refueling (recharge Xe tanks)	1200 kg
	Replacing thrusters, PPUs	269 kg
	Total service, payload to occulter	1469 kg
	Number of star observations	250
	Number of servicing missions	1
Jnserviced 10 yr mission expendables: 4,200 kg		
	Each service, payload to occulter	1469 kg
	Number of star observations	395
	Number of servicing visits	4
	Total payload to occulter	5876 kg

Each service, payload to occulter	1469 kg
Number of star observations	329
Number of servicing visits	4
Total payload to occulter	5876 kg

Robotic servicing can extend mission Scenarios with 10 year lifetime

- Option 1: Servicing after 5 years (10 yr total), rendezvous at L2 or at earth-moon L1
 - Doubles number of star observations
- Option 2: Higher fuel rate, servicing every 2 years, rendezvous at L2
 - 60% more stars
- Option 3: Occulter 44% farther from telescope, servicing every 2 years, rendezvous at L2
 - Better science: see planets 20% closer to star
 - More thorough search of each star, and/or
 - Choose candidate stars from 73% larger list

	Refueling (recharge Xe tanks)	1200 kg
	Replacing thrusters, PPUs	269 kg
	Total service, payload to occulter	1469 kg
	Number of star observations	250
	Number of servicing missions	1
Unserviced 10 yr mission expendables: 4,200 kg		
	Each service, payload to occulter	1469 kg
	Number of star observations	395
	Number of servicing visits	4
	Total payload to occulter	5876 kg
Inserviced 10 yr mission expendables: 36,700 kg		
		14(01
	Each service, payload to occulter	1469 kg
	Number of star observations	329
	Number of servicing visits	4

Total payload to occulter

Unserviced 10 yr mission expendables: 36,600 kg

5876 kg

Backup Thrusters and Power

- NEXT thruster system (NASA-Glenn)
 - -235 mN, $I_{sp} = 4100$ s
 - 6.85 kW to thruster
 - 7.25 kW input per Power Processing Unit (PPU)
 - Accelerator electrode life limit estimated at 730 kg Xe
 - With 3 thrusters, estimated mission $\Delta v=10,193$ m/s

- 3 PPUs and 3 thrusters, cross-strapped
 - Mounted on the outside
 - Total 269 kg
- Power needs
 - Peak power 14.5 kW
 - PPU input 80-160V
- Two 7m Ultraflex arrays
 9 kW each

Backup Total Mission Fuel

• Fuel mass fraction is where

$$\frac{m_{\text{fuel}}}{m_{\text{dry}}} = \exp\left(\frac{8 \cdot N^2 \cdot D}{g \cdot I_{\text{sp}} \cdot T_{\text{M}}}\right) -$$

- N is the number of star observations performed in the mission
- D_1 is the typical slew distance between 2 stars \approx (separation distance)*(typical angle between 2 stars)
- $I_{sp} \approx 4200$ sec is the specific impulse of the thruster and g is 9.8 m/sec²
- T_M is the total mission time, or the time between servicing visits
- For small mass fraction, the science harvest N is

$$N = \sqrt{\frac{g \cdot I_{sp} \cdot T_{M}}{8 \cdot D} \cdot \frac{m_{fuel}}{m_{dry}}} \cdot \left(1 - \frac{1}{4} \cdot \frac{m_{fuel}}{m_{dry}} + O\left(\frac{m_{fuel}^{2}}{m_{dry}^{2}}\right)\right)$$

- We have a mass fraction $\sim 30\%$, so the second term is $\sim 7.5\%$ and the omitted terms are negligible