

Goddard Workshop on On-Orbit Servicing

Presentation by Hoyt Davidson

Providing <u>Investment Banking</u> and <u>Advisory Services</u> to Companies and Investors in the Satellite, Aerospace and Wireless Telecom Sectors

Market Opportunity

- Satellite monitoring
 - Deployment (20 new GEO satellites per year)
 - Fleet health (200+ GEO satellites)
- Satellite refueling
 - Life extension (20 GEO satellites per year reach end of useful fuel)
 - Launch dry (can save 40%+ on launch weight or do dual launch)
- Orbital transportation / transfer
 - Satellite relocation & de-orbiting (avg. 13 Geo belt relocations per year)
 - Rescue & recovery (avg. 1 satellite per year requires assistance)
- Satellite repair and maintenance
 - Life extension
 - Anomaly correction
 - Avg. annual failure rates: 4.4 component, 3.8 systemic, 0.3 deployment
- Propellant transfer and depot storage
- Orbital debris removal / mitigation
 - 19,000 > 10cm (but >95% LEO debris is Russian)
- On-orbit assembly (much further out, except for nanosat apps)

NASA: On-Orbit Servicing Efforts

Almost 30 years of technology development and demonstration

Palapa B2 & Westar 6:

1st recovery and return

Hubble: Dec. 1993 – May 2009 1st repair & upgrade ISS:
Today
Robotic arm
(SSRMS)
Dextre & DPP
Robonaut 2

Skylab: May 1973 1st onorbit repair Maximum Mission: April, 1984 1st use of modular parts

Solar

Other: On-Orbit Servicing Efforts

Most required technologies now demonstrated, except for debris removal and autonomous assembly

April 2005

1st autonomous
retirement
operations

DART:

Orbital Express (DARPA): March 2007 1st autonomous fuel transfer and major repairs DLR & MDA: Q1 2010 Announced orbital servicing missions (both delayed – TBD)

ETS VII (NASDA): Nov. 1997 1st autonomous rendezvous & docking XSS 10 & 11 (AFRL): Late 1990s 1st autonomous inspections & proximity operations

May 29, 2012 - Surrey Satellite develops nanosatellite with Xbox 360 Kinect controller and Google Nexus smartphone

Financing Issues / Risks: General

- Significant normal business risks:
 - Technology development risks like high-tech
 - Requires highly trained STEM to execute
 - Generally very capital intensive
 - Often significant uncertainty in costs
 - Frequently involves long development periods
 - Significant regulatory burdens
- Plus numerous unique or heightened risks:
 - Catastrophic launch or in-orbit failures
 - Significant 3rd party liability risks
 - Difficult competitive dynamics:
 - International marketing restrictions (ITAR)
 - Highly subsidized international competition
 - Potential for direct or indirect U.S. government competition
- And, uncertain market demand
 - High government contract termination risks due to policy changes
 - Nascent or non-existent commercial markets biggest investor risk

Financing Issues / Risks: Specific

	Technology	Market	Financing	Political/Reg	3 rd Party
Monitoring	Easy / Cheap	Large, Low\$	Low \$, Short T	Spying / ASAT?	High \$ satellites
Refueling	Doable	Uncertain	Med \$, Med T	Low	GEO sensitive
Transfer	Uncooperative?	Small, High \$	Med \$, Med T	Low	Low
Repair	> w/design	Uncertain	High \$, Med T	Low	GEO sensitive
Propellant	LT storage	Dual use/GEO?	High \$, Med T	Mission Arch.	Low
Debris Removal	Large Δv	Gov't only	High \$, Long T	Diplomatic	More debris?
Assembly	Complex	Gov't only	High \$, Long T	Space policy?	Low

NASA Policy Issues

- Improve perceptions: NASA as a reliable commercialization partner
 - Publish a commercialization roadmap and adopt NASA-wide
- **Foster innovation:** Build technology base and expand solutions
 - Increase challenges, funded studies and STEM education support
- Support technology development: Prototyping through COTS availability
 - Phase 3 & 4 SBIRS, In-Q-Tel for NASA, super competitions, NASA facilities
- **Demonstration missions**: Prove new space systems & technologies
 - COTS/CRS type, free flight challenges, TDRS test bed, NACA like tech sharing
- Validate market demand: Serve as initial and repeat customer
 - Customer #1, anchor tenant, future purchase agreements, debris bounties
- Enhance capital investment: Reduce capital requirements and investor risk
 - Contracts, SAAs, grants, loan guarantees, tax credits, exclusive rights

No Longer Just Operator & Insurer

Satellite
Owners/Operators

- Used to filing claims vs. risking servicing
- Plans for EOL/failures
- Value of life extension questionable
- Immediate back-up needed

- Need to get paid by Owner or Insurer
- Servicing option must be preferred over claim pay-out
- Need mission insurance

On-Orbit Servicing Industry

- Proven insurance model
- Do not want to own/operate
- Would insure servicing missions

Space Industry

Space Commercialization Lessons Learned

Technology Risks:

- Every space infrastructure development plan is high risk
- Launch and in-orbit failures do happen
- "Baby steps" are better than bold efforts

Market Risks:

- Lack of predictable market demand is key barrier to attracting capital
- Long development/deployment schedules heighten market risk
- U.S. government often needs to be anchor tenant or early dominant customer
- Having government as prime customer reduces control of business plan
- Commercial practices can produce considerable savings for government

Financial Risks:

- Delays are costly and can kill a project due to ROI hurdle
- Traditional aerospace contracting doesn't provide sufficient cost control
- Super angel support very helpful, but rarely enough
- Institutional investors are unforgiving and rarely revisit an opportunity

Space Commercialization Lessons (cont.)

Competition Risks:

- Two is a big number in space, rarely is there enough profits to support three
- International competition can be subsidized and enjoy lower costs/regulation
- NASA/U.S. government may compete against you directly or indirectly

Political/Regulatory Risks:

- NASA and U.S. government can change policy & support abruptly
- Some purposely avoid any ties to NASA or government
- ITAR is a serious limitation of market opportunity
- Other regulatory risks are high, but manageable
- Use of NASA facilities challenging and often uneconomic
- Indemnification uncertainty is a key issue

Conclusions

- Historic opportunity to foster vibrant U.S. on-orbit servicing industry
 - Much of technology already developed by NASA and others
 - In best interest of U.S. to commercialize to share investment & risks
- Commercial space interest exists, but investors see risks as too challenging
 - Capital is available if risk/reward can be brought in balance
 - New initiatives and ongoing NASA support will be required
- First challenge will be changing industry perceptions
 - COTS/CRS was an excellent first step
 - Lots of hard work ahead to change culture
 - Biggest unknown is internal & external political will to provide adequate budgeting

